Physical models of a patient’s brain help researchers treat neurological disorders and diseases

Oct 6, 2022

3 min

Ravi Hadimani

Brain phantoms are a creative solution for a challenging question: How do you tune an electromagnetic field to a patient without testing on the actual patient? Transcranial magnetic stimulation (TMS) is an application of electromagnetic research with the potential to change the way we treat migraines, depression, obsessive compulsive disorder and even conditions like schizophrenia and Parkinson’s disease.


Ravi Hadimani, Ph.D., associate professor of mechanical and nuclear engineering, leads a team of researchers who seek to use TMS to excite or inhibit brain neurons to alter specific brain functions and treat these conditions. This team includes faculty from VCU Health, including Mark Baron, M.D., professor of neurology and Kathryn Holloway, M.D., professor of neurosurgery, as well as outside collaborators like Joan Camprodon, M.D., associate professor of psychiatry at Harvard Medical School.


“The brain phantom is a first step,” says Hadimani, “Our ultimate goal is to 3D print a brain fabricated with biomaterial scaffolds and printed neurons that produce a stimulation response similar to neurons in our brain. This model would behave more realistically than current brain phantoms. Our future work involves collaborating with researchers who are able to print lab-grown neurons on biomaterial scaffolds or researchers who directly fabricate artificial neurons onto any scaffold.”


Coils used in TMS are responsible for generating the electromagnetic field used in treatment. Individual coils are designed to treat specific diseases, but additional settings like current strength, number of pulses and coil direction are unique to each patient. Refining these settings on the actual patient is not feasible. Computer modeling is also inefficient because creating head models and running simulations from MRI scans of the brain’s complex structure are not spontaneous.


Hadimani and his team developed the brain phantom as a novel solution to this problem. In 2018, the first model was created by Hamzah Magsood, one of Hadimani’s Ph.D. students. The brain phantom is a physical model of a patient’s brain designed to specifications obtained from MRI scans. Materials used in brain phantom construction are designed to replicate the electrical conductivity and electromagnetic permeability of different brain sectors. The result is a representation that, when connected to electrodes, provides instantaneous feedback to researchers calibrating TMS coils.


Elements of material science, electromagnetics and mechanical prototyping come together to create each brain phantom. The process starts with an MRI, which serves as a map for researchers designing the customized model. This is a careful process. Unlike other areas of the body with clear distinguishing features, like skin, muscle and bone, the brain has subtle differences between its many regions. Researchers must carefully distinguish between these areas to create an accurate brain phantom that will simulate a patient’s skin and skull as well as the brain’s gray and white matter.


A composite material of polymer and carbon nanotubes that exhibits electric properties similar to the human brain is the foundation for the brain phantom. Additive manufacturing, more commonly known as 3D printing, is used to create shells for different brain regions based on the patient’s MRI. This shell becomes a mold for the polymer and carbon nanotube solution. Once the brain phantom takes shape within the mold, it is placed within a solution that dissolves the casing, leaving only the brain phantom behind. The conductive parts of the brain phantom are dark because of the carbon nanotubes and non-conductive parts are lighter in color.


Electrodes are easily inserted into the brain phantom and provide feedback when an electromagnetic field from the TMS coil is applied. Adjustments to the strength, number of pulses of the field, and coil direction can then be made before applying the treatment to a patient.


Having recently received a patent for the brain phantom, Hadimani and Wesley Lohr, a senior biomedical engineering undergraduate, formed Realistic Anatomical Model (RAM) Phantom. The pair have been awarded both the Commonwealth Commercialization Fund Award and the Commonwealth Cyber Initiative Dreams to Reality Incubator Grant. RAM Phantom’s goal is to market brain phantom technology to the growing neuromodulation market, which also includes transcranial direct current stimulation and deep brain stimulation. The company will also aid in the development of advanced brain models that more accurately simulate the properties of the human brain.

Connect with:
Ravi Hadimani

Ravi Hadimani

Associate Professor and Director of Biomagnetics Laboratory

Professor Hadimani specializes in non-invasive brain stimulation, biomagnetics, magnetocalorics and energy harvesting research.

Transcranial Magnetic Stimulation (Tms)Piezoelectric Energy HarvestingMagnetic Nanoparticles Magnetocaloric EffectRare-Earth Magnetic Materials

You might also like...

Check out some other posts from VCU College of Engineering

2 min

National Science Foundation funds research into quantum material-based computing architecture at the VCU College of Engineering

Supporting the development of advanced computing hardware, the National Science Foundation (NSF) awarded Supriyo Bandyopadhyay, Ph.D., Commonwealth Professor in the Department of Electrical and Computer Engineering at the Virginia Commonwealth University (VCU) College of Engineering with more than $300,000 to develop processor-in-memory architecture using quantum materials. “This is one of the first mainstream applications of quantum materials that have unusual and unique quantum mechanical properties,” Bandyopadhyay said. “Quantum materials have been researched for more than a decade and yet there is not a single mainstream product in the market that utilizes them. We want to change that.” The four-year project, titled “Collaborative Research, Foundations of Emerging Technologies: PRocessor In Memory Architecture based on Topological Electronics (PRIMATE),” aims to advance computing hardware and artificial intelligence by integrating topological insulators and magnetic materials. Topological insulators are a special material with an electrically conductive surface and an insulated interior. They have special quantum mechanical properties like “spin-momentum locking,” which ensures the quantum mechanical spin of an electron-conducting current on the surface of the material is always perpendicular to the direction of motion.This marks the first time such quantum materials will be used in a processor-in-memory system. “We place a magnet on top of a topological insulator,” Bandyopadhyay said. “We then change the magnetization of the magnet by applying mechanical strain on it. That changes the electrical properties of the topological insulator via a quantum mechanical interaction known as exchange interaction. This change in the electrical properties can be exploited to perform the functions of a processor-in-memory computer architecture. The advantage is that this process is fast and extremely energy-efficient.” If successful, this approach could reduce energy use and dramatically speed up computing by moving data processing into the memory itself. It addresses the longstanding “memory bottleneck,” the slowdown caused by computers constantly needing to move data back and forth between processor and memory. These efficiencies could make advanced AI more efficient and accessible, paving the way for the first commercially viable applications of quantum materials.. The research is a collaboration with University of Virginia professors Avik Ghosh and Joseph Poon. A VCU Ph.D. student will work on the project and receive training in fabrication, characterization and measurement techniques, preparing them to lead in the rapidly evolving field of computing hardware.

2 min

American Nuclear Society names Lane Carasik, Ph.D., as one of its “40 Under 40”

Recognized as an emerging leader in the nuclear science and engineering field, Lane Carasik, Ph.D., assistant professor in the Department of Mechanical and Nuclear Engineering, was recently acknowledged by the American Nuclear Society as one of its top “40 Under 40.” “It is a huge honor to receive this acknowledgement from my professional community,” said Carasik. “I feel it is a reflection of the amazing nuclear engineering activities I’ve gotten the opportunity to pursue before and during my time at the VCU College of Engineering.” The list, featured in the most recent issue of Nuclear News magazine, celebrates young professionals who are driving innovation and shaping the future of nuclear science and technology. Created to spotlight a new generation of nuclear professionals, the “40 Under 40” program highlights those who are advancing technical fields, from advanced reactor deployment to AI applications and national security, while actively engaging the public, mentoring peers and advocating for nuclear’s role to achieve energy independence and security. “Dr. Carasik’s research efforts, together with his support for students and their own research goals, exemplifies the best qualities of the VCU College of Engineering,” said Arvind Agarwal, Ph.D., chair of the Department of Mechanical and Nuclear Engineering, “integrating research and teaching at the core of everything he does, from classroom and lab work to community outreach.” Carasik was selected for the “40 Under 40” from hundreds of candidates across the United States. Mentoring his first three Ph.D. graduates, Arturo Cabral, Connor Donlan and James Vulcanoff, is one of Carasik’s proudest achievements. He was also honored by the American Society of Mechanical Engineers (ASME) as a rising star in mechanical engineering in 2024 This builds off Carasik receiving the highly competitive and prestigious Department of Energy (DOE) Early Career Research Award ($875k split over five years) in 2023 to support his work on molten salt based fusion energy systems similar to Commonwealth Fusion Systems’ ARC technology. Carasik’s Fluids in Advanced Systems and Technology (FAST) research group, is a computational and experimental thermal hydraulics group focused on enabling the development of advanced energy systems and critical isotope production methods. Legendary physicist Enrico Fermi was an early inspiration to Carasik during his undergraduate studies. Fermi’s expertise mirrored Carasik’s interests, and the physicist’s impact on the field of nuclear engineering was motivating. As an established nuclear engineering faculty member, Carasik seeks to make a lasting impact on the field and the people in it. His ’s long-term goal is earning membership in the National Academies of Sciences, Engineering and Medicine.

2 min

VCU College of Engineering’s Michael McClure, Ph.D., named chair of Orthopaedic Research Society’s Skeletal Muscle Section

Michael McClure, Ph.D., associate professor from the Department of Biomedical Engineering and affiliate faculty in the Department of Orthopaedic Surgery and in the Institute for Engineering and Medicine, has been named chair of the Orthopaedic Research Society’s (ORS) newly launched Skeletal Muscle Section. The section began in August 2025, building on research interest groups and symposia to create a dedicated home for skeletal muscle studies within ORS. Its mission is to advance collaboration, innovation, education and translation in this field. Skeletal muscle disorders cause disability, chronic pain and high health care costs. Severe injuries and degenerative diseases, such as muscular dystrophies, remain difficult to treat. The section will strengthen research in muscle development, aging, trauma, disuse and disease. This work will expand the basic understanding of and identify therapeutic targets to restore function. In its first year, the section will measure success through increased skeletal muscle abstracts at the 2027 ORS Annual Meeting, growth in ORS membership and active participation in section programs. “We are thrilled to launch the Skeletal Muscle Section,” McClure said. “This home for translational muscle research will build on ORS progress over the past 10 years, help recruit new members and foster an environment that connects multiple areas of orthopaedic science.” McClure’s commitment to this work is shaped by his family’s experience with neuromuscular diseases, witnessing the impact of war-related injuries on patients’ quality of life from the Richmond Veterans Affairs Medical Center, and the momentum of translational discovery. Learn more about the ORS Skeletal Muscle Section.

View all posts